Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Diazido\{ N, N^{\prime}-bis[2-(2-pyridyl)ethylene]-1,3-diaminopropane\}nickel(II) monohydrate

De-Zhong Niu, ${ }^{\text {a }}$ Bai-Wang Sun, ${ }^{\text {a }}$ Zai-Sheng Lu, ${ }^{\text {a }}$ Zhe-Ming Wang ${ }^{\text {b }}$ and Chun-Hua Yan ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Xuzhou Normal University, Jiangsu 221009, People's Republic of China, and ${ }^{\mathbf{b}}$ State Key Laboratory of Rare Earth Materials Chemistry and Applications, and PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Peking University - Nonius BV Demo Lab For X-Ray Diffraction, Department of Chemistry, Peking University, Beijing 100871, People's Republic of China

Correspondence e-mail:
chyan@chem.pku.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.038$
$w R$ factor $=0.100$
Data-to-parameter ratio $=17.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

The crystal structure of yellow $\left[\mathrm{Ni}(L)\left(\mathrm{N}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, where L is N, N^{\prime}-bis[2-(2-pyridyl)ethylene]-1,3-diaminopropane $\left(\mathrm{C}_{15} \mathrm{H}_{16}{ }^{-}\right.$ N_{4}), containing six-coordinate nickel(II) with an octahedral [$\mathrm{Ni}^{\mathrm{II}} \mathrm{N}_{6}$] core, is reported. Four N atoms of the Schiff base ligand form the equatorial plane and two N atoms of two azide ligands occupy the axial positions.

Comment

In an attempt to prepare Haldane gap compounds with $S=1$, we obtained the mononuclear nickel(II) complex $[\mathrm{Ni}(L)$ $\left.\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, (I), where $L=N$, N^{\prime}-bis[2-(2-pyridyl)ethylene]-1,3-diaminopropane.

The $\mathrm{Ni}^{\mathrm{II}}$ octahedron deviates slightly from O_{h} symmetry, with the four N atoms of the Schiff base ligand in the equatorial plane, and two N atoms of different azide ligands at the axial positions. The $\mathrm{Ni}-\mathrm{N}$ distances are in the range 2.050 (2) -2.138 (2) \AA, the cis $-\mathrm{N}-\mathrm{Ni}-\mathrm{N}$ angles in the range 78.93 (8) $-109.65(7)^{\circ}$ and the trans $-\mathrm{N}-\mathrm{Ni}-\mathrm{N}$ angles in the range $171.21(7)-174.70(8)^{\circ}$. These values are in good agreement with those reported in the literature (Asokan et al., 1998). Fig. 1 shows an ellipsoid plot (Sheldrick, 1998) of the first coordination sphere of the $\mathrm{Ni}^{\mathrm{II}}$ site and the atom labeling.

The dihedral angles are 2.49 (2) ${ }^{\circ}$ between plane I (atoms $\mathrm{N} 1, \mathrm{~N} 2 \mathrm{~N} 3, \mathrm{~N} 4$ and Ni1) and plane II (atoms N1, C1, C2, C3, C 4 and C5) and 3.99 (2) ${ }^{\circ}$ between planes I and III (atoms N4, $\mathrm{C} 11, \mathrm{C} 12, \mathrm{C} 13, \mathrm{C} 14$ and C15).

Experimental

$0.214 \mathrm{~g}(2.0 \mathrm{mmol})$ of 2-pyridylaldehyde and $0.074 \mathrm{~g}(1.0 \mathrm{mmol})$ of 1,3-diaminopropane were stirred in 20 ml of ethanol, 0.237 mg $(1.0 \mathrm{mmol}) \mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was added, and the mixture was stirred to obtain a clear solution. To this, a solution of $130 \mathrm{mg}(2 \mathrm{mmol})$ of NaN_{3} in a minimum amount of water was added, and the solution was

Received 19 October 2001 Accepted 15 November 2001 Online 24 November 2001
filtered after 1 h . Yellow polyhedral crystals of $\left[\mathrm{Ni}(L)\left(\mathrm{N}_{3}\right)_{2}\right]$ were separated from the mother liquor by slow evaporation at room temperature after two weeks. The crystals were filtered off, washed with a small amount of water, and dried in air. The yield was 55%. Analysis calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{10} \mathrm{NiO}$: C 43.62, H 4.39, N 33.91%; found: C 43.55, H 4.56, N 34.21%.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{4}\right)\left(\mathrm{N}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	Mo $K \alpha$ radiation
$M_{r}=413.10$	Cell parameters from 48907
Orthorhombic, Pbca	reflections
$a=13.5783(3) \AA$	$\theta=3.5-27.9^{\circ}$
$b=15.2608(3) \AA$	$\mu=1.10 \mathrm{~mm}^{-1}$
$c=17.5449(4) \AA$	$T=293(2) \mathrm{K}$
$V=3635.58(14) \AA^{3}$	Block, yellow
$Z=8$	$0.24 \times 0.20 \times 0.18 \mathrm{~mm}$
$D_{x}=1.509 \mathrm{Mg} \mathrm{m}^{-3}$	

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: multiscan (Blessing, 1995, 1997)
$T_{\text {min }}=0.710, T_{\text {max }}=0.821$
48907 measured reflections
4317 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.100$
$S=1.02$
4317 reflections
252 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0425 P)^{2}\right. \\
& +1.9396 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.68 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.37 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0014 \text { (3) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

Ni1-N3	$2.0497(18)$	Ni1-N8	$2.130(2)$
Ni1-N2	$2.0569(18)$	Ni1-N1	$2.1339(18)$
Ni1-N5	$2.113(2)$	Ni1-N4	$2.1380(18)$
N3-Ni1-N2	$92.34(8)$	N5-Ni1-N1	$88.13(8)$
N3-Ni1-N5	$93.25(8)$	N8-Ni1-N1	$88.35(7)$
N2-Ni1-N5	$92.06(8)$	N3-Ni1-N4	$79.07(7)$
N3-Ni1-N8	$90.83(7)$	N2-Ni1-N4	$171.39(7)$
N2-Ni1-N8	$91.15(8)$	N5-Ni1-N4	$88.96(7)$
N5-Ni1-N8	$174.70(8)$	N8-Ni1-N4	$88.50(7)$
N3-Ni1-N1	$171.21(7)$	N1-Ni1-N4	$109.65(7)$
N2-Ni1-N1	$78.93(8)$		

Figure 1
The molecular structure with 30% probability displacement ellipsoids and the atom labeling.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1A $\cdots \mathrm{N} 5$	$0.94(2)$	$1.96(2)$	$2.892(3)$	$171(3)$
O1-H1B $\cdots \mathrm{N}^{\mathrm{i}}$	$0.94(2)$	$1.98(3)$	$2.901(3)$	$169(2)$

Symmetry code: (i) $x-\frac{1}{2}, y, \frac{1}{2}-z$.

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski \& Minor, 1997); data reduction: HKL DENZO (Otwinowski \& Minor, 1997) and maXus (Mackay et al., 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXL97.

References

Asokan, A., Varghese, B., Caneschi, A. \& Manoharan, P. T. (1998). Inorg. Chem. 37, 228-232.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
Mackay, S., Gilmore, C. J., Edwards, C., Tremayne, M., Stuart, N. \& Shankland, K. (1998). maXus. University of Glasgow, Scotland, Nonius BV, Delft, The Netherlands, and MacScience Co. Ltd, Yokohama, Japan.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter and R. M. Sweet, pp. 307-326. London: Academic Press.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. PC Version. University of Göttingen, Germany.
Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

